Home

The Consortium of Molecular Design at BYU provides cutting edge interdisciplinary research opportunities for students to push the envelope for protein engineering and drug discovery.

We use close collaboration between laboratories at BYU in Physics, Chemistry, Computer Science, LifeSciences, and Engineering to tackle these challenging topics from all angles.

We actively seek industrial collaboration and support for our efforts and are excited to explore mutually beneficial application of all state-of-the-art technologies to revolutionize molecular design.


News and Events

Selected Publications

Thumbnail of figure from publication
By Wendy M. Billings, Connor J. Morris, and Dennis Della Corte
Abstract:

The prediction of amino acid contacts from protein sequence is an important problem, as protein contacts are a vital step towards the prediction of folded protein structures. We propose that a powerful concept from deep learning, called ensembling, can increase the accuracy of protein contact predictions by combining the outputs of different neural network models. We show that ensembling the predictions made by different groups at the recent Critical Assessment of Protein Structure Prediction (CASP13) outperforms all individual groups. Further, we show that contacts derived from the distance predictions of three additional deep neural networks—AlphaFold, trRosetta, and ProSPr—can be substantially improved by ensembling all three networks. We also show that ensembling these recent deep neural networks with the best CASP13 group creates a superior contact prediction tool. Finally, we demonstrate that two ensembled networks can successfully differentiate between the folds of two highly homologous sequences. In order to build further on these findings, we propose the creation of a better protein contact benchmark set and additional open-source contact prediction methods.

Thumbnail of figure from publication
By Todd Millecam, Austin J. Jarrett, Naomi Young, and Dennis Della Corte (et al.)
Abstract:

The Allotrope Foundation (AF) is a group of pharmaceutical, device vendor, and software companies that develops and releases technologies [the Allotrope Data Format (ADF), the Allotrope Foundation Ontology (AFO), and the Allotrope Data Models (ADM)] to simplify the exchange of electronic data. We present here the first comprehensive history of the AF, its structure, a list of members and partners, and an introduction to the technologies. Finally, we provide current insights into the adoption and development of the technologies by summarizing the Fall 2020 Allotrope Connect virtual conference. This overview provides an easy access to the AF and highlights opportunities for collaboration.

Thumbnail of figure from publication
By Connor J. Morris and Dennis Della Corte
Abstract:

Molecular docking and molecular dynamics (MD) are powerful tools used to investigate protein-ligand interactions. Molecular docking programs predict the binding pose and affinity of a protein-ligand complex, while MD can be used to incorporate flexibility into docking calculations and gain further information on the kinetics and stability of the protein-ligand bond. This review covers state-of-the-art methods of using molecular docking and MD to explore protein-ligand interactions, with emphasis on application to drug discovery. We also call for further research on combining common molecular docking and MD methods.

Research Opportunities

Dennis Della Corte
Dennis Della Corte (Materials Physics )
  • ProSPr - Protein Structure Prediction

    A cross divisional team of physicists, computer scientists, biologists and chemists implements a novel protein structure prediction pipeline to solve one of the oldest challenges in computational biophysics: The Protein Folding Problem.

    We will apply our pipeline to a global community wide blind test in 2020 called CASP14. 

    The work entails:

    - training of convolutional neural networks

    - design of simulation algorithms

    - high performance super computer usage

    - chemical and biological evaluation of results

  • Radical SAM Engineering

    Together with the Chemistry department at BYU, we are developing  algorithms that aid the systematic design of novel enzymes.

    These enzymes can be applied to a variety of use cases, such as fertilizer production, detergent production, or drug production.