Home

The Consortium of Molecular Design at BYU provides cutting edge interdisciplinary research opportunities for students to push the envelope for protein engineering and drug discovery.

We use close collaboration between laboratories at BYU in Physics, Chemistry, Computer Science, LifeSciences, and Engineering to tackle these challenging topics from all angles.

We actively seek industrial collaboration and support for our efforts and are excited to explore mutually beneficial application of all state-of-the-art technologies to revolutionize molecular design.


News and Events

Selected Publications

Thumbnail of figure from publication
By Dennis Della Corte (et al.)
Abstract:

Standardizing data is crucial for preserving and exchanging scientific information. In particular, recording the context in which data were created ensures that information remains findable, accessible, interoperable, and reusable. Here, we introduce the concept of self-reporting data assets (SRDAs), which preserve data and contextual information. SRDAs are an abstract concept, which requires a suitable data format for implementation. Four promising data formats or languages are popularly used to represent data in pharma: JCAMP-DX, JSON, AnIML, and, more recently, the Allotrope Data Format (ADF). Here, we evaluate these four options in common use cases within the pharmaceutical industry using multiple criteria. The evaluation shows that ADF is the most suitable format for the implementation of SRDAs.

Thumbnail of figure from publication
By Bryce Hedelius and Dennis Della Corte (et al.)
Abstract:

Accurate predictions of interatomic energies and forces are essential for high quality molecular dynamic simulations (MD). Machine learning algorithms can be used to overcome limitations of classical MD by predicting ab initio quality energies and forces. SE(3)-equivariant neural network allow reasoning over spatial relationships and exploiting the rotational and translational symmetries. One such algorithm is the SE(3)-Transformer, which we adapt for the ANI-1x dataset. Our early experimental results indicate through ablation studies that deeper networks—with additional SE(3)-Transformer layers—could reach necessary accuracies to allow effective integration with MD. However, faster implementations of the SE(3)-Transformer will be required, such as the recently published accelerated version by Milesi.

Thumbnail of figure from publication
By Jacob Stern, Bryce Hedelius, Olivia Fisher, Wendy M. Billings, and Dennis Della Corte
Abstract:

The field of protein structure prediction has recently been revolutionized through the introduction of deep learning. The current state-of-the-art tool AlphaFold2 can predict highly accurate structures; however, it has a prohibitively long inference time for applications that require the folding of hundreds of sequences. The prediction of protein structure annotations, such as amino acid distances, can be achieved at a higher speed with existing tools, such as the ProSPr network. Here, we report on important updates to the ProSPr network, its performance in the recent Critical Assessment of Techniques for Protein Structure Prediction (CASP14) competition, and an evaluation of its accuracy dependency on sequence length and multiple sequence alignment depth. We also provide a detailed description of the architecture and the training process, accompanied by reusable code. This work is anticipated to provide a solid foundation for the further development of protein distance prediction tools.

Research Opportunities

Dennis Della Corte
Dennis Della Corte (Materials Physics )
  • ProSPr - Protein Structure Prediction

    A cross divisional team of physicists, computer scientists, biologists and chemists implements a novel protein structure prediction pipeline to solve one of the oldest challenges in computational biophysics: The Protein Folding Problem.

    We will apply our pipeline to a global community wide blind test in 2020 called CASP14. 

    The work entails:

    - training of convolutional neural networks

    - design of simulation algorithms

    - high performance super computer usage

    - chemical and biological evaluation of results

  • Radical SAM Engineering

    Together with the Chemistry department at BYU, we are developing  algorithms that aid the systematic design of novel enzymes.

    These enzymes can be applied to a variety of use cases, such as fertilizer production, detergent production, or drug production.