Home

The Consortium of Molecular Design at BYU provides cutting edge interdisciplinary research opportunities for students to push the envelope for protein engineering and drug discovery.

We use close collaboration between laboratories at BYU in Physics, Chemistry, Computer Science, LifeSciences, and Engineering to tackle these challenging topics from all angles.

We actively seek industrial collaboration and support for our efforts and are excited to explore mutually beneficial application of all state-of-the-art technologies to revolutionize molecular design.


News and Events

Selected Publications

Thumbnail of figure from publication
By Connor J. Morris, Jacob A. Stern, Brenden Stark, Max Christopherson, and Dennis Della Corte
Abstract:

Molecular docking tools are regularly used to computationally identify new molecules in virtual screening for drug discovery. However, docking tools suffer from inaccurate scoring functions with widely varying performance on different proteins. To enable more accurate ranking of active over inactive ligands in virtual screening, we created a machine learning consensus docking tool, MILCDock, that uses predictions from five traditional molecular docking tools to predict the probability a ligand binds to a protein. MILCDock was trained and tested on data from both the DUD-E and LIT-PCBA docking datasets and shows improved performance over traditional molecular docking tools and other consensus docking methods on the DUD-E dataset. LIT-PCBA targets proved to be difficult for all methods tested. We also find that DUD-E data, although biased, can be effective in training machine learning tools if care is taken to avoid DUD-E’s biases during training.

Thumbnail of figure from publication
By Ben Graul, Matthew L. Rollins, Nathan Powers, and Dennis Della Corte
Abstract:

This paper outlines the feasibility of replacing a midterm assessment with a student-created digital media project. We examine the benefits of a peer review process for student-created pedagogy, the effectiveness of the student-generated digital media, and self-evaluations as a replacement for traditional forms of assessment. We conclude that this innovative teaching and assessment model is both effective and timely as more college courses are being taught digitally and/or asynchronously.

Thumbnail of figure from publication
By Dennis Della Corte, Connor J. Morris, Wendy M. Billings, Jacob Stern, Austin J. Jarrett, Bryce Hedelius, and Adam Bennion
Abstract:

Effective mentoring of undergraduate students is a growing requirement for the promotion of faculty at many universities. It is often challenging for young investigators to define a successful mentoring strategy, partially due to the absence of a broadly accepted definition of what mentoring should entail. To overcome this, an outcome-oriented mentoring framework was developed and used with more than 25 students over three years. It was found that a systematic mentoring approach can help students quickly realize their scientific potential and result in meaningful contributions to science. This report especially shows how the Critical Assessment of Protein Structure Prediction (CASP14) challenge was used to amplify student research efforts. As a result of this challenge, multiple publications, presentations and scholarships were awarded to the participating students. The mentoring framework continues to see much success in allowing undergraduate students, including students from underrepresented groups, to foster scientific talent and make meaningful contributions to the scientific community.

Research Opportunities

Dennis Della Corte
Dennis Della Corte (Materials Physics )
  • ProSPr - Protein Structure Prediction

    A cross divisional team of physicists, computer scientists, biologists and chemists implements a novel protein structure prediction pipeline to solve one of the oldest challenges in computational biophysics: The Protein Folding Problem.

    We will apply our pipeline to a global community wide blind test in 2020 called CASP14. 

    The work entails:

    - training of convolutional neural networks

    - design of simulation algorithms

    - high performance super computer usage

    - chemical and biological evaluation of results

  • Radical SAM Engineering

    Together with the Chemistry department at BYU, we are developing  algorithms that aid the systematic design of novel enzymes.

    These enzymes can be applied to a variety of use cases, such as fertilizer production, detergent production, or drug production.